Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517127

ABSTRACT

BACKGROUNDS: In order to provide a long-lasting formulation for spinosad (SP) targeting larval stages of Aedes aegypti (Linnaeus) and others alike, a SP tablet was developed based on microspheres, using polylactic acid as inside coating material. The microspheres were encapsulated using polyethylene glycol and 1-hexadecanol to form a sustained-release SP tablet. Micromorphology, active ingredient loading, structure identification, photolysis resistance and biological activity were evaluated in this report. RESULTS: (i) The SP microspheres had an average particle size of 6.16 ± 2.28 µm, low adhesion and good dispersion as evaluated by scanning electron microscopy and morphology. (ii) The average active ingredient loading and encapsulation of SP microspheres were 32.80 ± 0.74% and 78.41 ± 2.22%, respectively. (iii) The chemical structure of encapsulated SP was confirmed by Fourier transform infrared and 1H-nuclear magnetic resonance. (iv) The photostability of the microspheres and the tablets were evaluated. The results showed that DT50 (time required to dissipate 50% of the mass originally present) of SP was 0.95 days in microspheres and 6.94 days in tablets. (v) The long-term insecticidal activity of SP tablets was investigated, and the tablet had a long-lasting activity against the mosquito larvae, showing 100% larval mortality for 63 days. CONCLUSIONS: The study provided a new long-lasting formulation of SP, which displayed good efficacy in the control of Ae. aegypti larvae. © 2024 Society of Chemical Industry.

2.
Nat Commun ; 15(1): 996, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307858

ABSTRACT

Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Reproduction , Biological Evolution , Hybridization, Genetic
3.
Front Chem ; 12: 1353745, 2024.
Article in English | MEDLINE | ID: mdl-38380396

ABSTRACT

To investigate the quantitative relationship between the pyrolysis characteristics and chemical components of tobacco materials, various machine learning methods were used to establish a quantitative analysis model of tobacco. The model relates the thermal weight loss rate to 19 chemical components, and identifies the characteristic temperature intervals of the pyrolysis process that significantly relate to the chemical components. The results showed that: 1) Among various machine learning methods, partial least squares (PLS), support vector regression (SVR) and Gaussian process regression (GPR) demonstrated superior regression performance on thermogravimetric data and chemical components. 2) The PLS model showed the best performance on fitting and prediction effects, and has good generalization ability to predict the 19 chemical components. For most components, the determination coefficients R 2 are above 0.85. While the performance of SVR and GPR models was comparable, the R 2 for most chemical components were below 0.75. 3) The significant temperature intervals for various chemical components were different, and most of the affected temperature intervals were within 130°C-400°C. The results can provide a reference for the materials selection of cigarette and reveal the possible interactions of various chemical components of tobacco materials in the pyrolysis process.

4.
Brain Res ; 1822: 148608, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37778648

ABSTRACT

The central leptin signaling system has been found to facilitate breathing and is linked to obesity-related hypoventilation. Activation of leptin signaling in the nucleus tractus solitarii (NTS) and retrotrapezoid nucleus (RTN) enhances respiratory drive. In this study, we investigated how medullary leptin signaling contributes to hypoventilation and whether respective deletion of SOCS3 in the NTS and RTN could mitigate hypoventilation in diet-induced obesity (DIO) male mice. Our findings revealed a decrease in the number of CO2-activated NTS neurons and downregulation of acid-sensing ion channels in DIO mice compared to lean control mice. Moreover, NTS leptin signaling was disrupted, as evidenced by the downregulation of phosphorylated STAT3 and the upregulation of SOCS3 in DIO mice. Importantly, deleting SOCS3 in the NTS and RTN significantly improved the diminished hypercapnic ventilatory response in DIO mice. In conclusion, our study suggests that disrupted medullary leptin signaling contributes to obesity-related hypoventilation, and inhibiting the upregulated SOCS3 in the NTS and RTN can alleviate this condition.


Subject(s)
Hypoventilation , Leptin , Solitary Nucleus , Suppressor of Cytokine Signaling 3 Protein , Animals , Male , Mice , Diet , Hypoventilation/genetics , Obesity/complications , Solitary Nucleus/physiology , Suppressor of Cytokine Signaling 3 Protein/metabolism
5.
Int Heart J ; 65(1): 159-164, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38148007

ABSTRACT

This study present a case of a 49-year-old woman who suffered from resistant hypertension, hypokalemia, hypomenorrhea, and infertility. She was hospitalized 6 years earlier for hypomenorrhea and abdominal pain at the Xiamen Maternity and Child Health Hospital, where she was diagnosed with Asherman syndrome. During hospitalization, a computed tomography examination revealed an adrenal mass. She was referred to Xiamen University Affiliated Zhongshan Hospital for pheochromocytoma and underwent surgical resection of the left adrenal gland. The adrenal cortex adenoma was confirmed by pathological biopsy. Six years later, the patient also presented with hypertension and hypokalemia to our emergency department. A diagnosis of 17α-hydroxylase deficiency was established through the analysis of clinical and laboratory characteristics. The genetic analysis of CYP17A1 revealed compound heterozygous mutations, 1 of which was a mutation of c.1226 C>G, and the other c.297+2T>C.


Subject(s)
Adrenal Gland Neoplasms , Adrenal Hyperplasia, Congenital , Gynatresia , Hypertension , Hypokalemia , Pheochromocytoma , Child , Female , Humans , Pregnancy , Middle Aged , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Pheochromocytoma/complications , Pheochromocytoma/diagnosis , Pheochromocytoma/genetics , Mutation , Adrenal Gland Neoplasms/complications , Adrenal Gland Neoplasms/diagnosis , Adrenal Gland Neoplasms/genetics , Menstruation Disturbances
6.
Brain Res Bull ; 201: 110693, 2023 09.
Article in English | MEDLINE | ID: mdl-37348822

ABSTRACT

The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTSLepRb neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing. However, the monosynaptic inputs and outputs of NTSLepRb neurons in whole-brain mapping remain to be elucidated. Therefore, the exploration of its whole-brain connection system may provide strong support for comprehensively understanding the physiological and pathological functions of NTSLepRb neurons. In the present study, we used a cell type-specific, modified rabies virus and adeno-associated virus with the Cre-loxp system to map monosynaptic inputs and outputs of NTSLepRb neurons in LepRb-Cre mice. The results showed that NTSLepRb neurons received inputs from 48 nuclei in the whole brain from five brain regions, including especially the medulla. We found that NTSLepRb neurons received inputs from nuclei associated with respiration, such as the pre-Bötzinger complex, ambiguus nucleus, and parabrachial nucleus. Interestingly, some brain areas related to cardiovascular regulation-i.e., the ventrolateral periaqueductal gray and locus coeruleus-also sent a small number of inputs to NTSLepRb neurons. In addition, anterograde tracing results demonstrated that NTSLepRb neurons sent efferent projections to 15 nuclei, including the dorsomedial hypothalamic nucleus and arcuate hypothalamic nucleus, which are involved in regulation of energy metabolism and feeding behaviors. Quantitative statistical analysis revealed that the inputs of the whole brain to NTSLepRb neurons were significantly greater than the outputs. Our study comprehensively revealed neuronal connections of NTSLepRb neurons in the whole brain and provided a neuroanatomical basis for further research on physiological and pathological functions of NTSLepRb neurons.


Subject(s)
Receptors, Leptin , Solitary Nucleus , Mice , Animals , Solitary Nucleus/metabolism , Receptors, Leptin/metabolism , Neurons/metabolism , Brain Mapping , Obesity/metabolism
7.
Nat Commun ; 14(1): 1640, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964129

ABSTRACT

Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.


Subject(s)
Oryza , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/metabolism , Ligands , Edible Grain/metabolism , Biological Transport
8.
Neurosci Bull ; 39(8): 1193-1209, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36588135

ABSTRACT

The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.


Subject(s)
Phenylethanolamine N-Methyltransferase , Solitary Nucleus , Solitary Nucleus/metabolism , Blood Pressure/physiology , Phenylethanolamine N-Methyltransferase/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
9.
Front Plant Sci ; 13: 1071693, 2022.
Article in English | MEDLINE | ID: mdl-36507382

ABSTRACT

Vast quantities of synthetic pesticides have been widely applied in various fields to kill plant pathogens, resulting in increased pathogen resistance and decreased effectiveness of such chemicals. In addition, the increased presence of pesticide residues affects living organisms and the environment largely on a global scale. To mitigate the impact of crop diseases more sustainably on plant health and productivity, there is a need for more safe and more eco-friendly strategies as compared to chemical prevention. Quorum sensing (QS) is an intercellular communication mechanism in a bacterial population, through which bacteria adjust their population density and behavior upon sensing the levels of signaling molecules in the environment. As an alternative, quorum quenching (QQ) is a promising new strategy for disease control, which interferes with QS by blocking intercellular communication between pathogenic bacteria to suppress the expression of disease-causing genes. Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is associated with the diffusible signal factor (DSF). As detailed in this study, a new QQ strain F25, identified as Burkholderia sp., displayed a superior ability to completely degrade 2 mM of DSF within 72 h. The main intermediate product in the biodegradation of DSF was identified as n-decanoic acid, based on gas chromatography-mass spectrometry (GC-MS). A metabolic pathway for DSF by strain F25 is proposed, based on the chemical structure of DSF and its intermediates, demonstrating the possible degradation of DSF via oxidation-reduction. The application of strain F25 and its crude enzyme as biocontrol agents significantly attenuated black rot caused by Xcc, and inhibited tissue maceration in the host plant Raphanus sativus L., without affecting the host plant. This suggests that agents produced from strain F25 and its crude enzyme have promising applications in controlling infectious diseases caused by DSF-dependent bacterial pathogens. These findings are expected to provide a new therapeutic strategy for controlling QS-mediated plant diseases.

10.
Mol Plant ; 15(12): 1908-1930, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36303433

ABSTRACT

Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.


Subject(s)
Oryza , Salt Tolerance , Salt Tolerance/genetics , Oryza/genetics , Hydrolases , Family
11.
Clin Cardiol ; 45(12): 1229-1235, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36124718

ABSTRACT

BACKGROUND: Cryoballoon ablation (CBA) is recommended for patients with symptomatic drug refractory paroxysmal atrial fibrillation (pAF). However, substantial atrial fibrillation (AF) recurrence is common during follow-up. Searching for a potential biomarker representing both myocardial injury and inflammation to identify patients at high risk of AF recurrence after CBA is very meaningful for postoperative management of AF patients. HYPOTHESIS: To evaluate the clinical efficacy of high-mobility group box 1 (HMGB1) protein released from the left atrium to predict AF recurrence in pAF patients after CBA at 1-year follow-up. METHODS: We included 72 pAF patients who underwent CBA. To determine the expression levels of HMGB1, left atrial blood samples were collected from the patients before CBA and after the procedure through the transseptal sheath. Patients were followed up for AF recurrence for 1 year. RESULTS: A total of 19 patients of the 72 experienced AF recurrence. The level of postoperative HMGB1 (HMGB1post) was higher in the AF recurrence group than in the AF non recurrence group (p = .03). However, no differences were noted in the levels of other biomarkers such as preoperative high-sensitivity C-reactive protein (hs-CRP), postoperativehs-CRP, and preoperative HMGB1 between the two groups. Multiple logistic regression analysis revealed that a higher level of serum HMGB1post was associated with AF recurrence (odds ratio: 5.29 [1.17-23.92], p = .04). Receiver operating characteristic analysis revealed that HMGB1post had a moderate predictive power for AF recurrence (area under the curve: 0.68; sensitivity: 72%; and specificity: 68%). The 1-year AF-free survival was significantly lower in patients with a high HMGB1post level than in those with a low HMGB1post level (hazard ratio: 3.81 [1.49-9.75], p = .005). CONCLUSION: In pAF patients who under went CBA, the level of HMGB1 after CBA was associated with AF recurrence and demonstrated a moderate predictive power. Thus, we offer a potential biomarker to identify pAF patients at high risk of AF recurrence.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Cryosurgery , HMGB1 Protein , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Cryosurgery/adverse effects , Cryosurgery/methods , Catheter Ablation/adverse effects , Catheter Ablation/methods , Treatment Outcome , Biomarkers
12.
Biology (Basel) ; 11(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36009794

ABSTRACT

Culex quinquefasciatus, one of the most significant mosquito vectors in the world, is widespread in most parts of southern China. A variety of diseases including Bancroft's filariasis, West Nile disease, and St. Louis encephalitis could be transmitted by the vector. Mosquitoes have been shown to host diverse bacterial communities that vary depending on environmental factors such as temperature and rainfall. In this work, 16S rDNA sequencing was used to analyze the seasonal variation of midgut bacterial diversity of Cx. Quinquefasciatus in Haikou City, Hainan Province, China. Proteobacteria was the dominant phylum, accounting for 79.7% (autumn), 73% (winter), 80.4% (spring), and 84.5% (summer). The abundance of Bacteroidetes in autumn and winter was higher than in others. Interestingly, Epsilonbacteraeota, which only exists in autumn and winter, was discovered accidentally in the midgut. We speculated that this might participate in the nutritional supply of adult mosquitoes when temperatures drop. Wolbachia is the most abundant in autumn, accounting for 31.6% of bacteria. The content of Pantoea was highest in the summer group, which might be related to the enhancement of the ability of mosquitoes as temperatures increased. Pseudomonas is carried out as the highest level in winter. On the contrary, in spring and summer, the genus in highest abundance is Enterobacter. Acinetobacter enriches in the spring when it turns from cold to hot. By studying the diversity of midgut bacteria of Cx. quinquefasciatus, we can further understand the co-evolution of mosquitoes and their symbiotic microbes. This is necessary to discuss the seasonal variation of microorganisms and ultimately provide a new perspective for the control of Cx. quinquefasciatus to reduce the spread of the diseases which have notably vital practical significance for the effective prevention of Cx. quinquefasciatus.

13.
Science ; 376(6599): 1293-1300, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35709289

ABSTRACT

How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.


Subject(s)
Chloroplasts , Oryza , Plant Proteins , Quantitative Trait Loci , Thermotolerance , Chloroplasts/genetics , Chloroplasts/physiology , Genes, Plant , Oryza/genetics , Oryza/physiology , Plant Breeding/methods , Plant Proteins/genetics , Thermotolerance/genetics
14.
Neurosci Bull ; 38(2): 149-165, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34212297

ABSTRACT

Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control. Both chemogenetic and optogenetic stimulation of LepRb-expressing NTS (NTSLepRb) neurons notably activated breathing. Moreover, stimulation of NTSLepRb neurons projecting to the lateral parabrachial nucleus (LPBN) not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTSLepRb neurons, but also activated LPBN neurons projecting to the preBötzinger complex (preBötC). By contrast, ablation of NTSLepRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation. In brainstem slices, bath application of leptin rapidly depolarized the membrane potential, increased the spontaneous firing rate, and accelerated the Ca2+ transients in most NTSLepRb neurons. Therefore, leptin potentiates breathing in the NTS most likely via an NTS-LPBN-preBötC circuit.


Subject(s)
Leptin , Solitary Nucleus , Leptin/metabolism , Leptin/pharmacology , Membrane Potentials , Neurons/metabolism , Solitary Nucleus/metabolism
15.
Commun Biol ; 4(1): 1171, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620988

ABSTRACT

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.


Subject(s)
Edible Grain/growth & development , Flavonoids/metabolism , Lignin/metabolism , Organic Cation Transport Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Metabolic Flux Analysis , Organic Cation Transport Proteins/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Stress, Physiological
16.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502147

ABSTRACT

Tetramethrin is a pyrethroid insecticide that is commonly used worldwide. The toxicity of this insecticide into the living system is an important concern. In this study, a novel tetramethrin-degrading bacterial strain named A16 was isolated from the activated sludge and identified as Gordonia cholesterolivorans. Strain A16 exhibited superior tetramethrin degradation activity, and utilized tetramethrin as the sole carbon source for growth in a mineral salt medium (MSM). High-performance liquid chromatography (HPLC) analysis revealed that the A16 strain was able to completely degrade 25 mg·L-1 of tetramethrin after 9 days of incubation. Strain A16 effectively degraded tetramethrin at temperature 20-40 °C, pH 5-9, and initial tetramethrin 25-800 mg·L-1. The maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were determined to be 0.4561 day-1, 7.3 mg·L-1, and 75.2 mg·L-1, respectively. The Box-Behnken design was used to optimize degradation conditions, and maximum degradation was observed at pH 8.5 and a temperature of 38 °C. Five intermediate metabolites were identified after analyzing the degradation products through gas chromatography-mass spectrometry (GC-MS), which suggested that tetramethrin could be degraded first by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and its subsequent metabolism. This is the first report of a metabolic pathway of tetramethrin in a microorganism. Furthermore, bioaugmentation of tetramethrin-contaminated soils (50 mg·kg-1) with strain A16 (1.0 × 107 cells g-1 of soil) significantly accelerated the degradation rate of tetramethrin, and 74.1% and 82.9% of tetramethrin was removed from sterile and non-sterile soils within 11 days, respectively. The strain A16 was also capable of efficiently degrading a broad spectrum of synthetic pyrethroids including D-cyphenothrin, chlorempenthrin, prallethrin, and allethrin, with a degradation efficiency of 68.3%, 60.7%, 91.6%, and 94.7%, respectively, after being cultured under the same conditions for 11 days. The results of the present study confirmed the bioremediation potential of strain A16 from a contaminated environment.


Subject(s)
Actinobacteria/metabolism , Insecticides/metabolism , Pyrethrins/metabolism , Soil Pollutants/metabolism , Actinobacteria/growth & development , Biotransformation , Industrial Microbiology/methods
17.
Sci Rep ; 11(1): 681, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436914

ABSTRACT

Improper use of antibiotics results in poor treatment and severe bacterial resistance. In this study, ultrafiltration probes were successfully placed in the ileum of piglets with the aid of anesthetic. After the fluoroquinolone antimicrobial drug danofloxacin (DAN) was intramuscularly administered, blood and ileum ultrafiltrate were collected at different time points and then determined by High Performance Liquid Chromatography (HPLC). Pharmacokinetics (PK) parameters for plasma and ileum ultrafiltrate were calculated by WinNonlin software. The DAN concentration in ileum ultrafiltrate was much higher than that in plasma during the period 1.2-48 h. The DAN concentration in plasma reached its maximum at 1.10 ± 0.03 h, but reached at 6.00 ± 0.00 h in the ileum ultrafiltrate. The mean Cmax of the ileum is 13.59 times that of plasma. The elimination half-life (T1/2ß) in the ileum ultrafiltrate (6.84 ± 1.49 h) was shorter than those in plasma (7.58 ± 3.20 h). The MIC, MBC and MPC of DAN in MH broth against Escherichia coli (O158) were 0.5 µg/mL, 0.5 µg/mL and 4 µg/mL, respectively. Both in vitro and ex vivo kill curves indicated that the killing mechanism of DAN against E. coli is concentration-dependent. The AUC/MPC ratio is 21.33 ± 2.14. Mean PK/PD index (AUC24h/MIC) for ileum ultrafiltrate that achieved bacteriostatic, bactericidal, and eradication were 99.85, 155.57, and 218.02 h, respectively. Three different dosages (1.49 mg/kg, 2.42 mg/kg, and 3.24 mg/kg) were calculated respectively based on AUC24h/MIC ratio above, which might provide a novel approach to the rational design of dosage schedules.


Subject(s)
Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Fluoroquinolones/pharmacology , Fluoroquinolones/pharmacokinetics , Ileum/drug effects , Models, Biological , Animals , Animals, Newborn , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/pharmacology , Escherichia coli Infections/microbiology , Ileum/microbiology , Male , Swine , Tissue Distribution , Ultrafiltration
18.
Ecotoxicol Environ Saf ; 208: 111725, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396056

ABSTRACT

Aflatoxin B1 (AFB1) is a potent hepatotoxic and carcinogenic agent. Curcumin possesses potential anti-inflammatory, anti-oxidative and hepatoprotective effects. However, the role of LncRNAs in the protective mechanisms of curcumin against AFB1-induced liver damage is still elusive. Experimental broilers were randomly divided into 1) control group, 2) AFB1 group (1 mg/kg feed), 3) cur + AFB1 group (1 mg/kg AFB1 plus 300 mg/kg curcumin diet) and 4) curcumin group (300 mg/kg curcumin diet). Liver transcriptome analyses and qPCR were performed to identify shifts in genes expression. In addition, histopathological assessment and oxidant status were determined. Dietary AFB1 caused hepatic morphological injury, significantly increased the production of ROS, decreased liver antioxidant enzymes activities and induced inflammation and apoptosis. However, dietary curcumin partially attenuated the abnormal morphological changes, oxidative stress, and apoptosis in liver tissues. Transcriptional profiling results showed that 34 LncRNAs and 717 mRNAs were differentially expressed with AFB1 and curcumin co-treatment in livers of broilers. Analysis of the LncRNA-mRNA network, GO and KEGG enrichment data suggested that oxidative stress, inflammation and apoptosis pathway were crucial in curcumin's alleviating AFB1-induced liver damage. In conclusion, curcumin prevented AFB1-induced oxidative stress, inflammation and apoptosis through LncRNAs. These results provide new insights for unveiling the protective mechanisms of curcumin against AFB1-induced liver damage.


Subject(s)
Aflatoxin B1/toxicity , Curcumin/pharmacology , Liver/drug effects , Protective Agents/pharmacology , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Chickens/metabolism , Diet , Inflammation/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology
19.
Neurosci Bull ; 37(1): 31-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32468398

ABSTRACT

The locus coeruleus (LC) has been implicated in the control of breathing. Congenital central hypoventilation syndrome results from mutation of the paired-like homeobox 2b (Phox2b) gene that is expressed in LC neurons. The present study was designed to address whether stimulation of Phox2b-expressing LC (Phox2bLC) neurons affects breathing and to reveal the putative circuit mechanism. A Cre-dependent viral vector encoding a Gq-coupled human M3 muscarinic receptor (hM3Dq) was delivered into the LC of Phox2b-Cre mice. The hM3Dq-transduced neurons were pharmacologically activated while respiratory function was measured by plethysmography. We demonstrated that selective stimulation of Phox2bLC neurons significantly increased basal ventilation in conscious mice. Genetic ablation of these neurons markedly impaired hypercapnic ventilatory responses. Moreover, stimulation of Phox2bLC neurons enhanced the activity of preBötzinger complex neurons. Finally, axons of Phox2bLC neurons projected to the preBötzinger complex. Collectively, Phox2bLC neurons contribute to the control of breathing most likely via an LC-preBötzinger complex circuit.


Subject(s)
Homeodomain Proteins , Locus Coeruleus , Animals , DNA-Binding Proteins , Guanine Nucleotide Exchange Factors , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Locus Coeruleus/metabolism , Mice , Neurons/metabolism , Respiration , Transcription Factors/genetics , Transcription Factors/metabolism
20.
J Physiol ; 599(4): 1115-1130, 2021 02.
Article in English | MEDLINE | ID: mdl-33347681

ABSTRACT

KEY POINTS: This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT: The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.


Subject(s)
Carbon Dioxide , Chemoreceptor Cells , Animals , Neurons , Rats , Rats, Inbred SHR , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL
...